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List of symbols
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T
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<m>
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Po

- Mach number,

- Nusselt number,

- density,
- cartesian coordinates fixed with respect to the flat plate,

- unit Reynolds number, m 1,

- temperature (absolute),
- heating wire temperature,

- wire recovery temperature,

- stagnation temperature,
- freestream velocity,

- recovery factor (r/= T/To),

- Reynolds number based on the hot-wire diameter,

- anemometer output voltage,

- voltage fluctuations across hot wire,

-length of the hot-wire element,

f R w - R e "_,
- overheat ratio of the wire _!aw - _Re J

- diameter of the wire,

- wire resistance at operating temperature T,_,

- wire resistance at operating temperature Te,
- dimensionless sensitivity to the mass flow fluctuations,

- dimensionless frequency parameter(F=2_f/(Re_U)),

- dimensionless sensitivity to the total temperature fluctuations,

- sensitivity factor to the mass flow fluctuations,
- sensitivity factor to the total temperature fluctuations,

- root-mean-square (r.m.s.) value of the hot-wire output, %,
- dimensionless r.m.s, mass flow fluctuations,

- dimensionless r.m.s, stagnation temperature fluctuations,

- sensitivity ratio,
- stagnation pressure, kg/m 2.

- static pressure, kg/m 2,
f Te\

- overheat ratio [ - ],
-To J
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Preface

This study <{Supersonic Leading Edge Receptivity>> is proceeded according to

the Research Cooperative Agreement between NASA (USA) and Institute of

Theoretical and Applied Mechanics of Siberian Division of Russian Academy of

Science (ITAM), signed in 1995 (first year Grant number NCCW-74, second and

third years Grant number NCC-1-240).

According to the Agreements, investigations of receptivity problem should be

made using controlled disturbances during three years. The field of controlled

disturbances were excited using the local disturbance generator placed in the test

section of supersonic wind tunnel. During the first year, the levels and modes of

natural and artificial fluctuations were determined by the hot-wire measurements in

the free stream of ITAM T-325 supersonic wind tunnel at Mach numbers 2 and 3.5.

In the second year, sharp leading edge receptivity was studied using controlled

disturbances. In the third year, the receptivity was studied for the case of a flat plate

with blunted leading edge (bluntness radius was 2.5 mm).

Since ITAM T-325 wind tunnel does not belong to the category of low-noise

wind tunnels, the fulfillment of scheduled work was preceded by technical works for

reduction of noise level in the test section of T-325. Namely, they were:

(a) a grinding of a surface of settling chamber part behind damping screens and (b)

polishing of the surface of the test section and the entrance to the test section. This

allowed us to achieve at least 20% reduction of acoustic noise level in T-325 test

section for M=2 and 50% -- for M=3.5. As for the introduction of controlled

disturbances into the free stream, the source of disturbances was improved in

comparison with our early works (Kosinov et al. 19941) to study the receptivity

problem in controlled conditions. It was made to ensure the smooth adjustment of

controlled disturbance intensity and to gain an additional experience in such

experiments.

The programs for automated hot-wire measurements with regard to

determination of pulsation modes were based on the method, proposed by

Kovasznay (1950), and the appropriate programs for data processing were used.
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1. Introduction

Now it is common knowledge, that laminar-turbulent transition in boundary

layers is associated with receptivity and instability (an amplification of disturbances,

which cause transition) processes. Usually the term _{receptivity>> means the

mechanism, through which the various external disturbances excite unstable

oscillations inside boundary layer, leading to transition (Morkovin 1969). In

particular, the solution of receptivity problem is connected with the development of

engineering methods of transition prediction (Bushnell 1990; Reshotko 1976, 1994).

Now it is necessary to design a new generation of high-speed airplanes, therefore

the receptivity problem is very important.

The majority of theoretical and experimental studies of receptivity problem

was carried out for subsonic flows. The first experimental study of the receptivity

problem was made by Klebanoff (1971). This pioneer work provided an influence on

further experimental studies.

More exhaustive reviews can be found in Nishioka & Morkovin 1986;

Kachanov et at. 1981 ; Goldstein & Hultgren 1989; Kendall 1990, 1998; Heinrich et al

1988. In low speed flows, the wavelengths of free-stream disturbances (acoustic and

vortex modes) are much longer than wavelengths of boundary layer instability

fluctuations. Therefore, the transformation of external disturbances to the

eigenwaves of the boundary layer occurs near the leading edge and is caused by

roughness, local separation and other flow inhomogeneities. Here we should cite

only some theoretical and experimental studies related to subsonic receptivity

problem: (Bushnell 1990; Nishioka & Morkovin 1986; Kachanov et al. 1981;

Goldstein & Hultgren 1989; Goldstein 1983; Choudhari & Street 1992; Aizin &

Polyakov 1979; Nayfeh & Ashour 1994; Saric et al. 1994; Kosorygin et al. 1995;

Kobayashi et al. 1995; Crouch 1994; Bertolotti 1995; Kachanov 1996; Kendall 1990,

1998; Herbert et al. 1993; Westin at al. 1994; Crouch & Spalart 1995).

At supersonic speed the problem is more complicated, and it still was not

studied in detail. The first attempt to study theoretically the interaction between

sound waves and supersonic boundary layer on the basis of linear stability theory
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was undertaken by Mack (1975). It was obtained, that under the action of external

sound waves, the growing oscillations appeared in the boundary layer, and that their

amplitudes were many times the acoustic waves amplitudes. Similar studies were

carried out by Gaponov (1977). The localized generation of Tollmien-Schlicting (TS)

waves in supersonic boundary layer was analyzed by Choudhari & Street (1990).

They obtained that {<receptivity could occur either due to nonparallel effects close to

the leading edge and in regions of short-scale variations in wall boundary conditions,

or as a result of local resonances between the free-stream unsteadiness and the

instability waves>>. It was found that generation of TS waves by free stream vorticity

or entropy modes are an order lower than those due to the action of external

acoustic waves. The most effective receptivity mechanism takes place for oblique

acoustic waves and streamwise inhomogeneity in geometry (Choudhari & Street

1990).

We should note the theoretical studies (Fedorov & Khohlov 1991 ; 1992; Duck

1990; Choudhari & Street 1993) of the leading edge receptivity to external sound

waves in supersonic boundary layer. An excitation of the first and the second modes

by longitudinal sound waves in the vicinity of a sharp leading edge of flat plate was

analyzed by Fedorov & Khohlov (1991). An excitation was caused by sound

diffraction at the displacement effect of boundary layer. These results were

generalized by Fedorov & Khohlov (1992) for any falling angle of an external wave.

Two mechanisms of excitation were defined there. First mechanism was connected

with diffraction of the sound waves and the second -- with occurrence of sound field

sources due to wave interference on the leading edge. From this point of view it may

be obtained, that the generation of unstable waves in the boundary layer depends

on the inclination angle of the acoustic wave and on the direction from where the

sound waves falls, i.e. from above or below. The excitation of the oscillations by

longitudinal sound field in boundary layer was investigated by Gaponov (1995).

Strong dependence of disturbance intensity inside boundary layer from spatial

orientation of the forced sound wave was obtained in this work. Study of blunted

edge receptivity appeared most recently (Xiaolin Zhong 1997). We should note that
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the verifications of foregoing conclusions (Fedorov & Khohlov 1992; Gaponov 1995;

Duck et al. 1997; Xiaolin Zhong 1997) calls for extended experimental investigations.

In the first experiments the influence of external factors (level of a free stream

turbulence, model vibrations, acoustic background disturbances) on laminar-

turbulent transition was studied. But for better understanding of transition process it

is necessary first of all to study the generation and the development of unstable

waves, leading to transition. Such approach was used at Mach number M=1.6+8.5

by Kendall (1975) who tested the development of natural disturbances in the

boundary layer and also measured the correlation coefficients between fluctuations

in the free stream and inside the boundary layer. Large intensity of disturbances in

the boundary layer in a region close to the leading edge, caused by influence of an

external sound field, was found out. It was found that at M>3 the aerodynamic noise

in the test section led to the monotonic growth of the disturbances in the boundary

layer from the leading edge of model. Correlation measurements have shown, that

correlation coefficients increased with increasing Mach number M. Comparison of

experimental results (Kendall 1975) with theory developed by Mack (1984) showed a

good agreement for M=4.5.

A source of controlled disturbances developed at supersonic speeds by

Kosinov et al. (1983) allowed to carry out experimental study of receptivity problem

(Maslov & Semionov 1986; 19871; 1989; Kosinov et al. 19901) as well. In Maslov &

Semionov(1986; 19871) it was established, that the most intensive generation of

eigen oscillations of the supersonic boundary layer by the sound waves takes place

in the following areas: the leading edge, lower branch of a neutral stability curve and

a "sound" branch. A wave structure of boundary layer disturbances, induced by the

sound waves which fell on the flat plate leading edge from above, was investigated

in Maslov, Semionov (1989). The obtained data was compared with the structure of

wave disturbances, induced by the local source in the boundary layer (Kosinov et al.

19901 ). The results (Kosinov et al. 19941; 19901 , Maslov & Semionov 1986; 19871 )

showed a complicated picture of transformation of acoustic waves into boundary

layer unstable disturbances. In particular, the excitation of the unstable disturbances

9
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in the boundary layer can occur in various places and for the different reasons

(Bushnell 1990; Nishioka & Morkovin 1986; Maslov & Semionov 1986).

The technique of receptivity researches was modified several years ago

(Kosinov et al. 19941). The leading edge receptivity was recently investigated

experimentally in Kosinov et al. (19941),Semionov et a1.(1996). In this case acoustic

waves fell from below and the excitation of unstable waves took place only in the

leading edge region. This method allowed to obtain the receptivity coefficients (the

ratio of generated disturbance amplitude in the boundary layer to the amplitude of

acoustic wave which fell on the leading edge) for the first time. The maximum

receptivity coefficients were observed for the waves with inclination angles

Z=20:-40 °. Experimental investigations of hypersonic leading edge receptivity began

only with the help of our method (Maslov et al. 1998). We should note that all our

previous receptivity experiments were carried out using surface discharge as the

source of controlled disturbances. That source was improved later and now it is

based on the discharge in a chamber (Kosinov et al. 1996). It was made to ensure

smooth adjustment of intensity of controlled disturbances and to gain an additional

experience in such investigations. All data presented in this report were obtained

with the new source of controlled disturbances.

However the carried out studies are still insufficient to understand the

generation of unstable disturbances in boundary layer by external disturbances. As it

follows from a number of papers, the receptivity problem is rather complicated and

extensive. There is no all-purpose solution of this problem now. It is necessary to

find this solution for each specific case. New additional results connected with this

problem should be forthcoming.

The following report presents experimental study of generation of unstable

disturbances in supersonic boundary layer by external controlled disturbances in

sharp and blunted leading edge of the flat plate.

10
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2. Experimental equipment and data processing

2.1. Wind tunnel

Experiments were carried out in periodic action supersonic wind tunnel T-325

ITAM SD RAS. The main characteristics of wind tunnel T-325 are as follows:

- Range of Mach numbers: from 0.5 up to 4;

- Range of unit Reynolds numbers: (3.5+160)x106 m-l;

- Stagnation pressure: up to 14 atm.;

- Sizes of test section: 0.2x0.2x0.6 m;

- Duration of continuous work: - up to 60 minutes.

The working range of Mach numbers was realized by installation of

replaceable nozzles with a step in Mach numbers - 0.5.

For the reduction of speed fluctuations, acoustic noise level, vibrations of

wind tunnel construction, the following steps have been taken:

- Large reducing degree of a flow (for M=2 reducing degree was 35.7, for M=3.5

reducing degree was 130.8); the reducing degree of a flow was calculated as the

ratio of settling chamber cross section before entrance in nozzle to the critical nozzle

section;

- Multistep system of noise suppression after constrictors;

- Installation of 8 damping screens and honeycombs in settling chamber;

Vibration-proof positioning of test section and special vibration suppressing

devices.

The non-uniformity of Mach numbers in test section did not exceed 0.8 %.

The diagram of wind tunnel T-325 is shown in Fig.2.1. The wind tunnel is built

up with traversing equipment of test section. Traversing equipment of test section

represents the gear for moving of models, measuring devices, p_robes in three

mutually perpendicular direction:

- Streamwise axis "x": a travel is 265 mm;

- Crossflow axis "y" and "z": a travel is 160 mm.

The accuracy of a travel makes O 1 ram.

11
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The wind tunnel is equipped with traversing equipment, which has an

accuracy of a travel 0.01 mm, for more precise measurements in the boundary layer

of model.

T-325 wind tunnel is equipped by measuring system for pressure and temperature

measurements in settling chamber and test section.

Fig.2.2 shows a view of test section and a part of settling chamber.

2.2. Measuring system

The wind tunnel is equipped by automated measuring system for non-

stationary and stationary flow parameters as well as probe position measurements.

The automated measuring system is based on two Russian-made micro-computers

connected with CAMAC. The given equipment permits to apply the input of

experimental data in PC, to accumulate the data and to create local archives, to

process the data and to output an express information on display, as well as to

control the work of wind

supersonic wind tunnel is

experiments.

Constant temperature

tunnel. The scheme of automated measurements in

shown in figs.2.3, 2.4. This scheme was used in

hot-wire anemometer (or constant current hot-wire

anemometer) has been used for disturbance measurements. AC signal from hot-wire

output was recorded in PC memory using 10-bit and 1MHz ADC (in the third year --

12-bit 750kHz ADC, thanks to kind gifts from Dr. James. M. Kendall ). DC signal from

hot-wire output was measured using five decade voltmeter. At mean flow

measurements, ADC had impulse start generated by the block of synchronization. At

controlled disturbance measurements, the start impulse was time-synchronized with

a signal from sine-shaped wave generator that was used to ignite the glow

discharge. This procedure provided synchronization of ADC start with phase

accuracy better than 1° in sine-shaped wave signal.

Constant temperature hot-wire anemometer, made in ITAM, was used in these

experiments. Throughout the first and the second year, hot-wire in use had the

Winston bridge with resistance ratio of 1:5 and frequency response up to 200 kHz.

12
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The last year a new hot-wire with resistance ratio of circuit arms 110 and frequency

response up to 500 kHz was in use. Probes were fabricated of tungsten wire with 5

microns diameter.

2.3. Data processing

For experiments conducting and data processing we used the results,

published in Kovasznay (1950), Zinojev & Lebiga (1990), and Kovasznay (1953).

Basic formulas, used for the data processing, are given below.

The following relations, that are applied to the interpretation of the hot-wire

results in the supersonic flows (Kovasznay 1950, Smits et al. 1983, Zinovjev &

Lebiga 1990), are well known:

E2Rw
Nu = = Alf(_) + Blg( _)Re n = (1)

_l(Ra + R_)2 (Tw - 7_)

B, B1 are certain dimensionless factors, determined by calibration,where A, A1,

Ra=23 Ohm, and the functions f and g are defined similar toSmits et al. (1983) by

expressions: f(_:)= 1-f'(_:), g( ,:)= 1-g "(-c).

The relation (1) is usually used in dimensional form:

E2=L +N(pU) ", (2)

where L and N are dimensional calibration coefficients.

As hot-wire in supersonic flow is sensitive to the mass flux (pU)" and temperature To'

fluctuations, we have:

OO__UTo , aEle'= (pU)+i-_o puT o'

or

I t

e'= kmm +k_,_T0 ,

aE T0 aE I define dimensional sensitivity factors.where relations k m - apU ' k° = _o pu

Following Smits et al. (1983), we can express k,,, and ke in the form:

13
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n-1

Llnkm- O'--_ To - 2E

_nla-_l (T'+rl)I LOf (E2-L)Og bn(E2-L).ko - To Lf(_ ÷ _)T, g

E I rl bn(E2-L)(E_++2.r/)I L af (E2-L) lag- 2T ° a _ E2 f(7:)a_: + g(_)

Here n=0.5, recovery factor is r/=0.95_+0.01 (;7 was defined by special

measurements), and coefficients a=b=0.768 are taken from power laws for heat

conductivity:

and viscosity:

Reynolds number was determined to the wire diameter:

pUd
Re-

#

overheat ratio was defined by following expressions:

E 2 = =kl(Ra + Rw)2(Tw - Te)[Af(v)+Bg(_)aen]= E'
Rw 1. J

Tw- Te
3-

TO

Dimensionless factors of sensitivity to fluctuations of the mass flux (Q) and the

stagnation temperature (G) were defined by expressions:

Q-
E -2 1- E2j'

G- koT°
E

Dimensionless root-mean-square fluctuations were defined by expressions:

e'
0-

koTo •

14
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As the fluctuation mode diagrams were linear functions for all measurements,

the governing equation can be written like this:

8=-r<m >+< To >,

where r is the relative sensitivity, defined by the following ratio:

Q kmpU
r-

G koT o

To determine the controlled disturbance level, some assumptions were used:

(a) relation between mass flux fluctuations and stagnation temperature fluctuations is

constant in the course of every given experiment and (b) this value is large, i.e.

<m>
- Ao = const and Ao>>l.

<To>

Then mass flux fluctuations can be expressed in the form:

<m'(x, y, z)>= O(x,y,z)Ao _ e'Ao =
rA o + 1 keTo(rA o + 1) <e '>A,m>.

Measurements of controlled disturbance field, generated by the source, were

carried out at frequency 20 kHz. A selective amplifier with 1% bandwidth and output

connected with ADC was used for these measurements. Application of selective

amplifier allowed to reduce the number of summations over realizations up to 200

(with the purpose to determine the controlled signal), that sped up the measurement

process. Complete length of each realization was 4096 points, but only first 200

points (that corresponds to four periods at frequency 20 kHz) were used for

averaging procedure. During experiment was supervised each, from averaged 200

times, oscillograms, and then it was recorded in data file. The source generates

disturbances with divisible frequencies by 10 kHz.

controlled disturbances are rather small in free stream,

needed to select them from complete signal.

On the other hand, since

much more summations are

Since the purpose of this study was to determine the level of controlled

disturbance field, Fourier time-transformation in the form of Fourier series was used

for oscillograms processing:

15
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ec(x,y,z):e¢(x, y,z)ei_'(x'Y'Z) :

T 2 N

e(x,y, t)e-i_tdt = N j_=1 ,
=21 z, -- e(x,y,z, tj)e -_tj

o

where T is the length of realization in time, N is the number of points in realization, er

are amplitudes of Fourier components, and _ is the phase. Discrete Fourier

transformation was used to determine amplitudes e_(,8) and phases d_(_ of

pulsation's ,&-spectra:

er(x, fl)exp(i_x,,8) )=T_et(x, zj) exp(-iflzj).

To determine the absolute value of controlled disturbances at frequency 20 kHz, the

root-mean-square value of a signal was used:

The transfer coefficient (i.e. a ratio of excited disturbance amplitude inside the

boundary layer to the forced oscillation amplitude of the acoustic wave, falling on the

leading edge), were found from the relation:

K(p)= rnl ('/5')_='_

ms(f)

The total (integrated and dimensionless) controlled pulsation of mass flux was

defined by:

mtot=fmr(,8)dfl.

Mean transfer factors K were defined using values of mtot by:

K=mMmt,,

where mb/and m_ are mass flux pulsations in free stream and in boundary layer,

respectively.
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2.4. Figures

o,V

r
i

!

t ;

i

Fig.2.1. Diagram of T-325: 1, 12 - constrictors; 2, 9 - dampers; 3 - noise suppression

compartments; 4 - settling chamber; 5 - honeycomb; 6 - damping screens;
7 - test section; 8 - traversing equipment of test section; 10 - vibroisolated
foundation; 11 - ejectors.
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Fig.2.2. Photo of T-325 test section
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I I

_BK-1 (DVK-1)

ocurtr_orpaqb 1,,1

(o_oi.o_o_o_I" ,L, IceneKTHBHbI12 yCtUIHTeJI/_ /

(selective amplifier) i/" N N

TepMoaHaMOMeTp

hot -wire

A/D

(AC) ] voltmeter

(DC)

I,,..,.

KAMAK

CAMAC

reHepaTopgenerator

i cxeMa / [

pa3pajla _1
discharge scheme '_

IBM-486DX-33

(DVK- 3.2)

Fig.2.3. Scheme of measurements
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Fig.2.4. Photos of T-325 control panel and measuring equipment
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3. On the pulsation level of natural and controlled disturbances in the test

section

Following scheduled program, the measurements were carried out to

investigate the spectrum and amplitudes of background disturbances in supersonic

wind tunnel T-325 free stream at Mach numbers 2 and 3.5. Forced disturbance field

in free stream was studied as well at Mach numbers 2 and 3.5.

3.1. Organization of experiments

Glow discharge on the flat plate surface was used earlier as a source of

controlled disturbances (Semionov et al. 1996) in our experiments on the leading

edge receptivity at Mach number M=2. Increased measurement accuracy allowed to

use the less powerful source of controlled disturbances, namely, a glow discharge in

the chamber. This source of controlled disturbances has many points in its favour: it

is more durable and more stable in time; it produce less electromagnetic noise; it

allows to regulate disturbance intensities moor smoothly. Therefore the glow

discharge in the chamber instead of the surface glow discharge was used in these

experiments.

3.2. Flat plates

The experimental installation is shown in fig.3.1 (and also on photographs,

figs3.2, 3.3). We used two trapezoidal plates, placed under zero angle of attack.

The plate 1 with generator of periodic disturbances was mounted on traversing

equipment bar and during experiment could moved to vary the distance from the wall

of wind tunnel test section. The plate 1 was 80 mm length, 80 mm width at a top and

60 mm at a basis, 5 mm thick. Slope angles of leading edge and lateral sides were

14°30 '. The distance a between the plate 1 and the test section wall was different for

Mach numbers 2 and 3.5. Namely, a=76 mm (see fig.3.1) for M=2 and a=90 mm for

M=3.5. The design of periodic disturbances generator is based on electric discharge
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in a chamber and is similar to the source described in Kosinov et al. (19902). The

artificial disturbances entered supersonic flow through 0.5 mm aperture in the

working surface of the flat plate. Coordinates of the source were: x=18_+0.25 mm,

z=0, where x is a streamwise coordinate from the leading edge of plate 1, z is a

spanwise coordinate in the symmetry plane of the plate 1. Disturbances at frequency

20 kHz were generated using high-frequency electric discharge, because it radiates

rather intensive acoustic waves in free stream (Maslov & Semionov 19872).

The plate 2 was fastened to pylon at 116 mm from the wall of T-325 test

section. The plate 2 was 280 mm length, 160 mm width at top and 80 mm at basis, 7

mm thick. Slope angles of sharp leading edge and lateral sides were 14°30 '. The

constructional arrangement allowed for remounting the plate 2 at various distances b

(see fig. 3.1) in streamwise direction. The leading edge radius was less than 0.03

mm.

3.3. Results

All measurements were carried out using constant temperature hot-wire

anemometer. We used probe fabricated of tungsten wire /=0.76 mm length and 5

microns in diameter. Presented in items 3.3.1 and 3.3.2 measurements were made in

one point at test section centerline, since dimensional root-mean-square pulsation

magnitudes were constant when hot-wire probe moved (as far as it was possible) in

x, y, z-directions. Controlled disturbance field in free stream was studied in the plane

of plate 2, except when a structure of radiation in normal direction from the plane of

plate 1 (see fig3.1 ) was investigated.

3.3. 1. Level of fluctuations in the test section of T-325 at M=2

Fig.3.4 shows dimensional calibrating dependencies at different wire heating

(here 0.54<a,,<1.0 and 0.46<-z-<0.86). Corresponding dimensional values of

calibrating constants as the functions of _-are presented in fig.3.5. The change of

stagnation temperature at these measurements comprised T0=283+0.2°K with
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exception of separate points. It is seen that stagnation temperature was stable, since

the scatter of points is basic stacked in error of definition To (0.1%). Fig.3.6 shows

dimensionless calibrating dependence Nu(R_d) at different overheat ratio of the

wire, and dependence Nu(r) is shown in fig.3.7 at different Red. Presented in fig.3.8

data show relative changing of Nusselt number from overheat loading r at different

Red. Variation of dimensionless calibrating factors A, B on rare shown in fig.3.9. The

functions f(r) and g(r) were determined from this data and are shown in fig.3.10.

These functions were used at further processing of measurement data.

It was obtained that

g(r)=1-0.015r and f(r)=1-0.76_,

which is quite similar to the data presented in Smits et a1.(1983), where at n=0.55 it

was obtained that

g(r)=1-O.O85r and f(r)=1-O.65r

The dimensionless values of sensitivity to the mass flux fluctuations Q and to

the stagnation temperature fluctuations G are presented in fig.3.11 and 3.12. Let us

not that L>0, if n>2Q and L<0, if n<2Q. In the experiments it was obtained Q=0.24

and for n=0.5 it was defined L>0. From the last experiments using the new CTA we

determined Q=0.27. In this case in order to obtain L>0 n=0.56 was chosen. As

would be expected, factor Q does not depend on Reynolds number. The relation

between these sensitivity factors is presented in fig.3.13. Ratio G/Q weakly depends

on Reynolds number, which correlates with results of work of Smits et al. (1983).

The fluctuation mode diaqrams of natural disturbances in wind tunnel test

section at various Reynolds numbers are presented in fig.3.14. Since all

dependencies _r) are linear functions, the fluctuation field corresponds to acoustic

disturbances. The values of mass flux fluctuations and stagnation temperature

fluctuations are presented in fig.3.15, 3.16 as total pressure and unit Reynolds

number dependencies. From these data it follows that in the test section the level of

stagnation temperature fluctuations is almost constant and does not exceed 0.01%

at Mach number M=2 and unit Reynolds numbers range from 7.0x106 to 30x106 m 1,

while mass flux fluctuation level increases from 0.07% to 0.2%.
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As mentioned

dependence, i.e.

above, the obtained fluctuation diagrams

8= <m>r+< To>.

show the linear

According to Kovasznay, (1953)and Zinovject & Lebiga(1990) such form of the

fluctuations diagram can correspond to either entropy or acoustic mode. As the

relation <To> and <m> does not equal to

a _

we can conclude that the measured disturbances represent the acoustic fluctuations.

If so, the equation for fluctuations can be rewritten in the form (Zinovjev & Lebiga

1990)

<p> .) (0=/_<U> 1 M 2 <U> + <p>-<u>)r,

where/3=a(y-1)lVP ; <u> are velocity fluctuations; <p> are pressure fluctuations;

a0

_)(O)=<T°>" al--_-Zr_oc =< m° >

To separate the fluctuations, the following system of equations was used:

< p >- < u >=< m 0 >

-(---7--1)M2 < u > (1

I+-_M 2

<p>

M2<u>
=<To>,

where M=2 and ),=1.4. The obtained numerical values of <m>, <To>, <p>, <u> are

presented in Table 3.1.
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Table 3.1.

Rel×106
m-1

Po

atm

29.24

Pst

kg/m 2

2.12

Po

kg/m 2

2799.72

<pU>
%

<To>
%

<p>
%

0.158

<U>

%

0.0595.72 0.42 555.36 4278.3 0.0994 0.0169

9.83 0.72 955.17 7358.3 0.0715 0.0059 0.104 0.033

12.26 0.89 1188.04 9180.8 0.0769 0.0073 0.114 0.037

16.23 1.17 1575.19 12141.1 0.0864 0.0050 0.123 0.037

21.47 1.56 2061.05 16126.6 0.1134 0.0041 0.157 0.044

26.76 1.94 2566.80 20083.8 0.1693 0.0073 0.237 0.068
21883.5 0.2028 0.0080 0.282 0.079

Mass flow pulsation spectra in free stream of test section are presented in

fig.3.17, 3.18. The data were measured after polishing of nozzles. The spectra were

determined on 4096 points from averaging of 16384 points of digital oscillogram

obtained using 12 bit 750 kHz ADC. The ADC was made from parts sent by Dr.

J.M.Kendall. Also the pulsations were measured using new CTA. We have been

compared the data with pulsation spectra obtained by Dr. V.ALebiga in T-325 test

section twenty years ago. In those measurements it was defined a maximum at f=-8-9

kHz in the spectra. From our data follow that now the maximum corresponds to f=-4-5

kHz. It maybe proposed that the changing of frequency spectra took place due to

improvement of settling chamber and test section of T-325. Total level of mass flow

pulsations corresponded to the data are shown in fig3.16 (data for 3 'd year).

3.3.2. Fluctuation level in T-325 test section at M=3.5

For given Mach number the detailed measurements of the fluctuation levels

were carried out for the sole value of unit Reynolds number. Namely, the data

presented below correspond to the fluctuation levels at Rel=7xl 06 m 1. Calibration to

mass flux was carried out at the wire ratio a,,=0.8, and calibration to overheat ratio at

Rel=7xl06 m-1. The final fluctuation diagrams in the test section at M=3.5 are

presented in fig.3.19. The diagrams show the linear character similar to the case

M=2, which correspond to the fluctuations diagram of the acoustic mode. It was

obtained, that the mass flux fluctuations are 0.15% and stagnation temperature

fluctuations are 0.004% at Rel=7xl06 m _.
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3.3.3. Level of the controlled fluctuation field in T-325 test section at M=2

In these experiments, a certain value of initial amplitude of controlled

disturbances from the local source was used. That value was kept constant through

all further measurements of fluctuation field with accuracy not less than 5%. The

experiments were made at Rel=9.9x10 e m 1. The measurements were carried out in

free stream in the plane of the plate 2 at a distance y1=40 mm from the surface of the

plate 1.

The amplitude-phase distributions of the controlled fluctuation field in x at

constant frequency are presented in fig.3.20. The variation of G/Q with _ is

presented in fig.3.21 and the controlled disturbance fluctuation diagrams in the free

stream at frequency 20 kHz (dimensionless frequency parameter is F=0.25x10 -4) is

shown in fig.3.22. Notice, that measurements of fluctuation diagrams were carried

out at x=6.1 mm, according to the data presented in fig.3.20. Coordinate x could be

chosen arbitrary in this experiments. Value x=0 was chosen to provide the beginning

of measurements before the region where the flow field was disturbed by controlled

fluctuations. To convert this coordinate x to the distance from the leading edge of the

plate 1, it is necessary to add the value x2=79 mm to xo This amplitude-phase

distributions of fluctuations permit to distinguish four characteristic x-areas according

to four maxima in these distributions. The analysis of similar amplitude and phase x-

distributions was made in Kosinov et al. (1994). Notice that the first area at the left

corresponds to the acoustic waves, propagated upstream, and the length of this area

(2-3 mm) is similar to the value obtained inKosinov et al. (1992) at boundary layer

measurements close to the local source of disturbances at M=2. The complete

analysis of these and other data are presented in subsequent chapters, where the

leading edge receptivity is considered. Figs.3.23, 3.24 show amplitude and phase z-

distributions for controlled fluctuations at frequency 20 kHz and x=6.1 mm.

The z-distributions of fluctuation amplitude and phase (real and imaginary

parts) at x=11 mm are presented in Fig3.25, 3.26. Related data for x=17 mm are

shown in Fig.3.27, 3.28. The y-distributions of fluctuation amplitude and phase are

presented in Fig.3.29. It is easy to observe that the obtained relations of the mass
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flux fluctuations to the stagnation temperature fluctuations at x=6.1 mm; 11 mm and

17 mm are rather different. The obtained values are Ao=7.6, 5, 9.5 and A<,,,>=1.245,

1.25, 1.35 correspondingly.

3.3.4. The level of controlled fluctuation field m T-325 test section, M=3.5

The study of the controlled disturbances field at M=3.5 was carried out in the

same manner as for M=2.0. The main difference was that the distance between

plates in normal direction decreased. The measurements were made at free stream

unit Reynolds number Re_=7xl0 e M1 in the plane of the plate 2 at the distance y1=26

mm from the plate 1 surface.

The amplitude and phase x-distribution for controlled fluctuations field for the

same frequency 20 kHz (dimensionless frequency parameter F=0.28x10 4) is

presented in fig.3.30. Variation of G/Q with r is shown in fig.3.31, and fluctuation

diagrams of the controlled disturbances in the free stream is shown in fig.3.32. To

convert x-coordinate to the distance from the leading edge of the plate 1, it is

necessary to add x3.5=90 mm to x value. Notice, that the measurement of the

fluctuation diagrams was carried out at x=30.4 mm, according to the data presented

in fig.3.30. Again, the value x=0 was chosen to provide the beginning of

measurements before the region where the flow field in the test section was

disturbed by controlled fluctuations. In this case, amplitude and phase distributions

of fluctuations permit to distinguish three characteristic x-areas according to three

maxima in these distributions. The first area corresponds to acoustic disturbances

propagated upstream and its length in x (8-10 mm) is several times more as

compared with the case M=2. The controlled disturbances field was measured in

coordinate z and calibration measurements were made at three values of coordinate

x=30.4 mm. These values were chosen in the areas of maximax: x=5 mm, x=16 mm,

in distributions.

Figs.3.33 and 3.34 show z-distributions of phase and amplitude of the

controlled fluctuations at x=5 mm and frequency 20 kHz. The z-distribution of

amplitude and phase of the mass flux fluctuations are presented in figs.3.35, 3.36 at
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x=16 mm. The similar data for x=30.4 mm are shown in fig.3.37. It is seen that the

obtained relations of the mass flux fluctuations to the stagnation temperature

fluctuations at x=5 mm; 16 mm and 30.4 mm are different. It was obtained that

Ao=I 1.064; 6.75; 6.4 and A,m,=1.81; 1.82; 1.86 correspondingly.
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3.4. Figures
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Fig.3.1. Experimental set-up: 1 - pylon; 2 - plate 2; 3 - traversing equipment bar of
test section; 4 - plate 1; 5 - localized source of disturbances; 6 - hot-wire

probe; 7 - traversing equipment; 8 - traversing equipment bar of plate 1.
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I

Fig.3.2. Photo of models

30



Supersonic Leading Edge Receptivity

Fig.3.3. Photo of models
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Spanwise and normal distributions of controlled disturbances. To understand

what sort of controlled disturbances should be used for testing the boundary layer

response, let us consider a spatial distribution of pulsations in free stream.

The data for normal coordinate are shown in figs.42-4.5. Here amplitude of

oscillograms is given in bits. For x=5mm (figs.4.2, 4.3) the border of controlled

pulsation field is situated at y=2mm and disturbances have the same phases for

y<lmm. More complicated data were obtained at x=16mm (figs.4.4, 4.5). It is

possible to supply these data by complimentary information from figs.4.2, 4.3 in

order to obtain the full structure of controlled disturbance field.

Instantaneous amplitude distributions are shown in figs.4.6, 4.8a, 4.9a

(amplitudes in figs.4.6-4.9 are given in bits). These figures show an increased

number of amplitude peaks in this distributions, namely, 21+1, where / is the number

of zone. It looks to be a kind of <<wakes_ from the previous zones. This change

leads to the changes in the phase distributions shown in figs.3.34, 3.36, 3.37. The

main changes are observed at the central part of phase distributions, where the

growth of phase for the first and the second zones and decrease of phase for the

third zone can be seen. This might be a consequence of the different nature of

radiation in these zones. Distributions A(z) and _(z) measured in free stream at x=5,

16, 30.4 mm are presented in figs.3.34-3.37. Amplitude distributions presented in

figs.3.33, 3.35, 3.37 correspond to the mass flux fluctuations.

Spanwise wave number spectra, fl- spectra for the mentioned above zones

were obtained using discrete Fourier-transformation. These spectra are shown in

fig.4.10. One can see waves at ,8-region from -0.5 rad/mm to 0.5 rad/mm. For the first

zone there is a maximum at ,8=0 in amplitude spectra. In other cases, three-

dimensional waves increase. The total mass flux pulsations are 0.18% for the first

zone, 0.28% for the second zone and 0.18% for the third zone.
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4.3.2. Boundary layer response

Pulsation diaqrams. To determine the mass flux pulsations from the hot-wire

data we used the same method as have been used for the free flow measurements.

Pulsation diagrams of the controlled disturbances in the boundary layer at z=0 are

presented in fig.4.11. Since the diagrams are almost linear functions, it is possible to

apply the described above relations in order to define the mass flux values. Values

Ao=18.3, 16.9, 4.9, and A<,,,,=1.96, 1.99, 1.8 were obtained for different zones and

each x, correspondingly. These values were used to define the mass flux pulsation

amplitude. As A<,,,> takes the close values in free stream and boundary layer as

well(see 4.3.1), it was proposed to use A<m>=l.9 for both cases. More important

conclusion from these data is that it is possible to define transfer factors directly from

amplitude/3 -spectra without using the diagram technique. This approach was used

by Semionov et al. (1996).

Spanwise distributions of controlled disturbances in boundary layer. To study

disturbance field, excited by external controlled pulsations, in the boundary layer, the

plate 2 was placed in such a way that the leading edge was consistently in those

sections, where external disturbances were measured (that means that coordinates

of the leading edge were x=5, 16 and 30 mm). The distributions At (z) and Or(z) were

measured for two x* positions of the plate 2 in the boundary layer, with exception for

the first position (x*=40 and 50 mm, where x* is a distance from the leading edge of

the plate 2). The data are presented in figs.4.12-4.15. Instantaneous amplitude

distributions are shown in figs.4.12b, 4.13c, d, 4.15. For these data the amplitude is

given in bits. Amplitude distributions presented in figs.4.12-4.14 correspond to the

mass flux fluctuations. It may be seen that regular wave structures observed in the

free stream are destroyed in the boundary layer in all zones.

p-spectra. Amplitude and phase /Y-spectra of excited disturbances for the

leading edge position x=5 mm are presented in fig4.16. It can be seen that the

oscillation amplitudes in the boundary layer are not equal to zero, contrary to the

case M=2 (Semionov et al. 1996). For the case M=2 it was obtained that the external
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disturbances propagated upstream do not practically cause any response in

supersonic boundary layer.

Amplitude and phase ,B-spectra of excited oscillations in the boundary layer at

x=16 and 30 mm are presented in figs.4.17 and 4.18. The amplitude of the excited

oscillations in the boundary layer are some times higher than the forced

disturbances. The waves with z=O ° are excited in the boundary layer more readily

than oblique waves. The obtained data correspond to the theoretical conclusions

(Fedorov & Khohlov 1992; Gaponov 1995).

Among the shown data, only the phase spectra at x=16mm are similar to the

phase spectra of wave trains in the boundary layer (Kosinov et al. 19902; 19942).

Presented data allow to obtain the mean values of the mass flux pulsations

excited in the boundary layer by external controlled disturbances. Total mass flux

pulsations are: 0.25% for excitation in the first zone and for x'=40mm, 0.58% for the

second zone and 0.47% for the third zone.

4.3.3. Transfer factors

Let us to estimate the transfer factors for each described above case. The

relevant data are shown in fig.4.19. Only for the first zone there is a smooth ,8-

dependence of the transfer factors. For the second and the third zones there are

some peaks in these dependencies. Obtained experimental data correlate with data

described by Gaponov (1995).

A possible reason of such behavior of transfer factors for the second and the

third zones is an incorrect definition of these factors without definition of a, - spectra

of the forced disturbances. For the linear case of the transformation of external

pulsations into unstable boundary layer disturbances it is necessary to consider the

disturbances which have the same wave characteristics (Gaponenko et al. 1996).

Using mean total values of mass flux pulsations obtained in free flow and in

boundary layer, respectively, we can define mean transfer factors for each case. The

relevant data are presented in table 4.1.
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Table 4.1.

x*=40

x*=50

<m>f,

%

0.185

0.185

x=5 mm x=16 mm x=30.4 mm

K1 <m>bl K2 1'(3

0.251

none

1.357

none

<m>fs

%

0.285

0.285

0.583

0.59

2.042

2.070

<m>f,

%

0.183

0.183

<m>bt

%

0.47

0.47

2.564

2.573

To illustrate what kind of disturbances is excited in the boundary layer by

external controlled pulsations, we consider phase velocity of the waves. The data

are shown in fig4.20. Here the solid line separates the waves of discrete and

continuous spectra. This line corresponds to the critical phase velocity C'=I-

li(Mcosz). Experimental data are compared with linear stability calculations

performed by I. I. Maslennikova for F=0.28x10 4 and Re=560. From these data

follows that the excited waves are first mode instability waves.

4.4. Leading edge receptivity at Mach 2

The experiments were carried out at Mach number M=2 and unit Reynolds

number Re1----9.9x106 m 1. The controlled disturbances with frequency f=20 kHz

(F=0.26x10 4) were generated by electric discharge in chamber. Measurements of

controlled disturbances ware accompanied by the calibration tests in order to

estimate the mass flux pulsation magnitude just like it was made at M=3.5.

4.4.1. Initial data

Here we consider streamwise distributions of amplitudes and phases of the

harmonic controlled pulsations in the free flow.

The initial field of the controlled fluctuations was measured in the free stream

in the plane of the plate 2 at distance yi=40 mm from the surface of the plate 1 (the

plate 2 was mounted further downstream). In this case the plate 2 was used as a

46



Supersonic Leading Edge Receptivity

support for traversing mechanism. The measurements were carried out along

coordinates x, y, z at fixed power of the local source.

Distributions of the amplitudes and phases A(x), _(x) at z=0 are shown in

fig.4.21. Here x-coordinate was measured from the upstream border of the forced

radiation zone. To analyze the obtained data we used the same simplified physical

model of disturbance source as for the discussed earlier case M=3.5. Using the

physical model of the source, three characteristic zones may be distinguished in

A(x) and @(x) distributions. These zones were tested for boundary layer response

and resulting regions can be classified as follows. The first zone (4 ram<x< 8 mm)

corresponds to acoustic waves, radiated by upstream propagated disturbances from

the source in the boundary layer of the plate 1. The second zone corresponds to

radiation from a vortex behind of the aperture (gmm<x<13 mm), and the third zone is

observed for x>13 mm as radiation from TS waves.

Notice that in the experiments at M=2 the initial amplitudes of the forced

waves is less than corresponding values at M=3.5. To illustrate this method we

consider below an example of the pulsation diagram for the second zone.

Pulsation diaqrams. Using data obtained in the first year experiments and

presented in previous report, the calibration measurements were performed. The

measurements were made at z=0 and x=l 1 mm. The fluctuation diagrams shown in

fig.4.22 look like linear functions, which indicates an acoustic nature of the radiation.

Values of the mass flux and the stagnation temperature pulsations are given in this

figure. The diagrams for the first and the third radiation zones were not measured

because for the second zone practically the same values of A,,,,, were obtained, so

previous values of A,,,,, were used for other zones. The following values of Ao and

A,m, were defined at x=11 mm: Ao=7.9 and A,,,,,=1.22. Some examples of the

pulsation diagrams were demonstrated in fig.3.22.

Spanwise distributions of controlled disturbances. To understand what kind of

controlled disturbances have been used for testing the boundary layer response, let

us consider the spanwise distributions of pulsations in the free stream.

Distributions A(z) and _(z) measured in the free stream at x=7, 11 mm are

presented in figs.4.23, 4.24. The measurements at x=18 mm have shown that the
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initial amplitude of the forced waves for this zone is too small to perform these

experiments. For data shown in figs.4.23a,b-4.24a,b the amplitude is given in bits.

Instantaneous amplitude distributions are shown in figs. 4.23a-4.24a, amplitude

isolines are presented in figs. 4.23b-4.24b. These data along with the phase

distributions shown in figs.4.23c-4.24c allow us to consider the presented data to be

related to the mixed zones. First data are typical for the mixture of the first and the

second zone while the data at x=l 1 mm are typical for the mixture of the second and

the third zone. The amplitude distributions Presented in figs.4.23c-4.24c correspond

to the mass flux fluctuations.

_spectra. Using discrete Fourier-transformation, the wave ,8-spectra were

obtained for the mentioned above zones. These spectra are shown in figs.4.25-4.26.

One can see waves at ,8-regions (-1 rad/mm; 1 rad/mm) for x=7 mm and about (-1.5

rad/mm; 1.5 rad/mm) for x=l 1 mm. For the first zone there is a sole maximum at ,8=0

in amplitude spectra while in other cases three-dimensional waves increased. The

total mass flux pulsation levels are 0.087% for x=7 mm and 0.093% for x=l I mm

4.4.2. Boundary layer response

Pulsation diaqrams. Pulsation diagrams of the controlled disturbances in the

boundary layer at z=0 are presented in fig4.27. As the diagrams are almost linear

functions, it is possible to apply the described above relations in order to define the

mass flux values. It was obtained that Ao=5.6, 42 and A<,,,>=1.35, 1.58 accordingly

for every x values. The factors A<m, have the close values both in free stream and in

the boundary layer as it was at M=3.5.

Spanwise distributions of controlled disturbances in the boundary layer. To

study the disturbance field in the boundary layer, excited by external controlled

pulsations, the plate 2 was placed so that the leading edge was consistently in those

sections, where external disturbances were measured (namely, coordinate of a

leading edge was x=7 and 11 mm). The distributions At (z) and ¢q (z) were measured

for two x*-positions in the boundary layer of the plate 2 (x*=-40 and 50 mm, where x*

is a distance from the leading edge of the plate 2). The data are presented in
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figs.4.28-4.33. Instantaneous amplitude distributions and amplitude isolines are

shown in figs.4.29, 4.30, 4.32, 4.33. For these data the amplitude is given in bits.

Presented in figs.4.28, 4.31 the amplitude distributions represent the mass flux

fluctuations.

_spectra. Amplitude and phase ,B-spectra of excited disturbances at the

leading edge position x=7 mm are presented in fig.4.34. It can be seen, that the

oscillation amplitude in the boundary layer is not equal to zero.

Amplitude and phase ,B-spectra for excited oscillations in the boundary layer

at x=l I mm are presented in fig.4.35. The waves with 2_0 ° are easier excited in the

boundary layer than oblique waves. The obtained data correlate to the theoretical

conclusions (Fedorov & Khohlov 1992; Gaponov 1995).

The mean values of the mass flux pulsations in the boundary layer, excited by

external controlled disturbances, can be obtained from presented data. Total mass

flux pulsations are 0.04% for the x=7 mm and 0.09% for x=l 1 mm.

4.4.3. Transfer factors

The obtained data allow to estimate the transfer factors for each described

above case. The data are shown in fig.4.36. Only for the first zone there is a smooth

p-dependence of the t_-ansfer factors. There is a number of peaks in these

dependencies for the second zones as for the case M=3.5.

Using mean total values of the mass flux pulsations obtained in free flow and

in the boundary layer, the mean transfer factors can be defined for each case. These

data are presented in table 4.2.

Table 4.2.

x=7 mm x=11 mm

<m>f, % <m>b_-% K1 <m>f, % <m>bj % K2

x*=40 0087 0.04 0.46 0.093 0.092 0.99

x*=50 0.087 0.043 0.49 0.093 0.095 1.02

49



Supersonic Leading Edge Receptivity

To illustrate what kind of disturbances is excited in the boundary layer by

external controlled pulsations, we consider phase velocity of the waves. The data

are shown in fig.4.37. From these data it follows that the excited waves are first

mode instability waves for x=l 1 mm, and phase velocity of the excited waves starting

from x=7 mm coincides with phase velocity of acoustic waves up to 45 degrees and

with the vortex waves for Z>45 °. Experimental data are compared with linear stability

calculations performed by I. I. Maslennikova for F=0.26x10 .4 and Re=670.
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4.5. Figures
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Fig.4.1. Dependence of amplitude A(x) and phase O(x) over streamwise coordinate x

at distance y=5.25 mm above the plane of plate 2 at z=0

M=3.5, X=5 mm

Fig.4.2. Dependence of amplitude of oscillograms of controlled disturbances over

normal Coordinate y at x=5 mm. 3-D plot.

51



Supersonic Leading Edge Receptivity

E
E

ii111111 
- _,uH

![
/ ;

50 100 150 200

t, _s

Fig.4.3. Dependence of amplitude of oscillograms of controlled disturbances over

normal coordinate y at x=5 mm. Contour-grid line plot.
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Fig4.4. Dependence of amplitude-of oscillograms of controlled disturbances over

normal coordinate y at x=5 mm Contour-grid line plot.
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Fig.3.25. Distribution of amplitude of mass flow fluctuation over transversal
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t_

900

600

300

i

L_

M=2, X=II mm

%-

L
0

?
/

d

J

P

/

, I I _ I , I * I i !

-30 -20 -10 0 10 20 30

Z, mm

Fig.3.26. Distribution of phase of mass flow fluctuation over transversal coordinate z.
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Fig.3.27. Distribution of amplitude of mass flow fluctuation over z.
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Fig3.28. Distribution of phase of mass flow fluctuation over z.
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Fig.3.29. Distribution of amplitude and phase of mass flow fluctuation over y.
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Fig.3.30. Distribution of amplitude and phase of mass flow fluctuation over x for

controlled disturbances at frequency 20 kHz.
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Fig.3.32. Fluctuation diagram of controlled disturbances.
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Fig.3.33. Distribution of amplitude of mass flow fluctuation over coordinate z.
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Fig.3.34. Distribution of phase of mass flow fluctuation over transversal coordinate z.
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Fig.3.35. Distribution of amplitude of mass flow fluctuation over coordinate z.
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Fig.3.36. Distribution of phase of mass flow fluctuation over transversal coordinate z
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Fig.3.37. Distribution of amplitude and phase of mass flow fluctuation over
coordinate z.
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4. Sharp leading edge receptivity

4.1. Organization of experiments

The experiments were carried out at Mach number M=3.5 and unit Reynolds

number ReI=7×106 m 1. The controlled disturbances of frequency f=-20 kHz

(F=0.28x10 "4) were generated by electric discharge in chamber. The initial amplitude

of controlled disturbances from the local source were fixed during these

experiments. Measurements of controlled disturbances were accompanied by

calibration tests in order to estimate the pulsation magnitude.

4.2. Flat plates

The test set-up is shown in figs.3.1, 3.3. To make the experiments we used

two trapezoidal plates, mounted under zero angle of attack. The plate 1 with

generator of periodic disturbances was mounted on traversing equipment bar and

could be moved during experiment on various distances from the walt of the test

section of wind tunnel. The plate 1 is 80 mm length, 80 mm width at top and 60 mm

at bottom, 5 mm thick. Slope angles of leading edge and lateral sides are 14°30 '.

Distance from the plate 1 to the wall of the test section depended on Mach numbers.

Namely, this distance was a=76 mm for M=2 (see fig.3.1), and a=90 mm for M=3.5.

The design of the generator of periodic disturbances is based on electric discharge

in chamber and is similar to the source described in Kosinov et al. (19902). The

artificial disturbances were entered into supersonic flow through an aperture with

diameter 0.5 mm in working surface of the flat plate. Coordinates of the source were:

x=18_+0.25 mm, z=0, where x is a streamwise coordinate from the leading edge of the

plate 1, z is a spanwize coordinate in a symmetry plane of the plate -1. Being rather

intensive to radiate acoustic waves in free stream (Maslov & Semionov 19872),

disturbances at frequency 20 kHz were generated with the help of the high-

frequency electric discharge.
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The plate 2 was fastened to pylon at the distance 116 mm from the wall of the

test section of T-325 wind tunnel. The plate 2 was 280 mm length, 160 mm width at

top and 80 mm at bottom, 7 mm thick. Slope angles of sharp leading edge and

lateral sides were 14o30 '. A possibility was provided for remounting of the plate 2 in

streamwise direction at various distances b (see fig.3.1) between leading edges of

plates. The leading edge radius was less than 0.03 mm

4.3. Leading edge receptivity at Mach 3.5

4.3.1. Initial data

First of all we should consider streamwise amplitude and phase distributions

for controlled pulsations in free stream flow.

An initial field of controlled fluctuations was measured in free stream in the

plane of the plate 2 at the distance y1=26 mm from the surface of the plate 1 (plate 2

was mounted further downstream). In this case the plate 2 was used as a support for

traversing mechanism. The initial amplitude of controlled disturbances was

measured along coordinates x, y, z at fixed power level of the local source of

disturbances. Distributions of the amplitude and phase A(x), _(x) at z=0 are shown

in fig.3.30. Coordinate x was measured from the upstream border of the forced

radiation zone.

To analyze the obtained data, it is useful to present a simplified physical

model of the source of disturbances. The artificial disturbances entered the

boundary layer through the aperture in the plate 1. Hence, it is obvious that vortices

with different directions of rotation in yx-plane were formed as the result of

deceleration of the flow in the near upstream and downstream fields of discharge.

Further downstream, the generated disturbances became themselves the origin of

Tollmien-Schlichting (TS) waves in the boundary layer of the plate 1. This process

was accompanied by a radiation of various types of controlled disturbances into the

free stream. The radiation propagated inside the Mach cone from the discharge.
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On the basis of this model, three characteristic zones can be distinguished

corresponding to the various types of functions Ao(x) and _o(X). Now we shall

classify these regions. The first zone (1 mm<x< 9 mm) corresponds to acoustic

waves, radiated by the source and propagated upstream in the boundary layer of the

plate 1. The region of propagated upstream disturbances in the boundary layer from

the controlled source was also observed by Kosinov et al. (1992). The second zone

corresponds to the sound waves radiated from a vortex behind of aperture (11 mm<

x < 20 mm), and the third zone is observed for x>22 mm as the sound wave radiation

from TS waves. The maximum at x=10 mm corresponds to the disturbance directly

radiated from the source aperture on the surface of the plate 1. These zones have

been tested for the boundary layer response.

Amplitude and phase distributions A(x) and ¢(x) for the controlled

disturbances in the free stream flow, measured in the plane of the plate 2 at j/=5 mm,

when the leading edge of the plate 2 was placed at x=30 mm, are shown in fig.4.1.

The maximum 1 in distribution A(x) at y=5 corresponds to the Mach" line from the

leading edge of the plate 2. The distributions A(x) and ¢(x) up to this maximum are

similar to ones presented in fig.3.30. Note that the amplitude of disturbances over

the plate 2 is very small, however the phase growth is rather pronounced. These

data confirm, that the unstable disturbance generation by acoustic waves occurs

only near the leading edge of the plate 2.

Pulsation diagrams. The measurements were made at z=0; x=5, 16, 30.4 mm

for each above mentioned zone. Fluctuation diagrams shown in fig.3.32 are linear

functions and the value <To> is small/that indicates an acoustic nature of radiated

waves (Kovasznay 1950). Values of the mass flux and stagnation temperature

pulsations are given in plots. The obtained values of ratio of the mass flux

fluctuations to the stagnation temperature fluctuations at x=5 mm; 16 mm and 30.4

mm appeared to be different. Namely, the obtained values were: Ao=-11.1, 6.8, 6.4

and A<m,=1.81, 1.82, 1.86 correspondingly to each x. Actually the values A,m,

were used to define the mass flux pulsation amplitude.
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M =3 5, X =16 mm

Fig.4.5. Dependence of amplitude of oscillograms of controlled disturbances over
normal coordinate y at x=16 mm. 3-D plot.
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Fig.4.6. Dependence of controlled disturbances over spanwise coordinate z at x=5
mm. Instantaneous distributions of oscillograms amplitude.
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Fig.4.7. Dependence of controlleddisturbances over spanwise coordinate z at x=5

mm. Isolines of oscillograms amplitude.
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Fig.4.8.a. Dependence of controlled disturbances over spanwise coordinate z at
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Fig.4.8.b. Dependence of controlled disturbances over spanwise coordinate z at
x=16 mm Isolines of oscillograms amplitude.
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Fig4.9.b. Dependence of controlled disturbances over spanwise coordinate z at

x=30.4 mm. Isolines of oscillograms amplitude.

65



Supersonic Leading Edge Receptivity

1 5
A

x=5 mm 100

EE 1 0 _ / X _:_ _ - 100

0,5 -300

0.0 ' -500
-2 -1 0 1 2

J3, rad/mm

Fig.4.10.a. Distributions of At(,8) and _8) of external acoustic disturbances for
different radiation zones, x=5 mm.
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Fig.4.11. Fluctuation diagrams of disturbances in boundary layer.
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Fig4.12.a Amplitude and phase spectra of excited disturbances in boundary layer
depending upon spanwise coordinate z at x=5 mm.
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coordinate z at x=5 mm.
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Fig.4.13.b. Phase spectra of excited disturbances in boundary layer depending upon
spanwise coordinate z at x=16 mm.

69



Supersonic Leading Edge Receptivity

6O

3O

0

-3O

-60

M=3.5, x=16mm, x'=50 mm

A r_.u'....I k

,i '1

I I L E 1 i

-30 -20 -10 0

I I

20 3010

z, mm

Fig4.13.c. Instantaneous distributions of oscillograms amplitude over spanwise
coordinate z at x=16 mm

60

3O

v 0

-3O

M:3.5, x=16 ram, x':40 turn

kN _ ,, _ ,_ It-.., vt_ _ ;"_,

' :"vt ll;"A'_' v . _"1',. _ _ : ./. , ._: * _(_ ' ' , ,

,_ "_ ,/
-60

-30 -20 -10 0 10 20 30

z, mm

Fig 4 13.d. Instantaneous distributions of oscillograms amplitude over spanwise
coordinate z at x=16 mm.

7O



Supersonic Leading Edge Receptzvity

-40 -30

A%

' i

i !

it .

g

-20

0.25 "-

0.20 r-

I

0.15 i

I

j
I

-10 p 10

x=30 mm

x*=40 mm

- -c}-,- x'--50

¥

t_

I r i

20 30

z, mm

Fig.4.14.a. Amplitude spectra of excited disturbances in boundary layer depending

upon spanwise coordinate z at x=30 mm

i

-40

i L

%
i

I i , i ,

-30 -20 -10

_00 _ _) o

ii _] --'--_.r___'_. x°=40 mm
i. _,_,_ _ x'=50

' , "%

10 2o 3o

z, mm

Fig4.14.b. Phase spectra of excited disturbances in boundary layer depending upon

spanwise coordinate z at x=30 mm.

71



Supersonic Leading Edge Recepriv#y

. [_

-40 -30

A%

0.25 i

i _ 0.20

15
.!"

-20 -10 _0

I

10

x=30 mm

x'=40 mm

-.-0-.- x'=50

It

it

r _ L

20 30

z, mm

Fig.4.14.a. Amplitude spectra of excited disturbances in boundary layer depending

upon spanwise coordinate z at x=30 mm.

t

-40

_00_ ¢ o
iSD T _ -.--0--.- x'=40 mm

-30 -20 -10 10 20 30

z, mm

Fig.4.14.b. Phase spectra of excited disturbances in boundary layer depending upon

spanwise coordinate z at x=30 mm.

72



Supersonic Leading Edge Receptivity

_, +-

J F

-40 -30

(

I i

i

_r
i'

r

A%

0.25

20

15

i

I

-20 -10 b 10

x=30 mm

x'=40 mm

- -C.,- - x'=50

Jl

ii
miqZ

i

i

, I I

20 30

Z, mm

Fig.4.14.c. Amplitude spectra of excited disturbances in boundary layer depending
upon spanwise coordinate z at x=30 mm

-4O

'_ :', _l_ - _-
_ _ ! i' "._, _ _, • _-_e_t_ _ _

i i I ,

-30 -20 -10 10 20 30

x'=40 mm

x "=50

z, mm

Fig 4.14.d. Phase spectra of excited disturbances in boundary layer depending upon
spanwise coordinate z at x=30 mm

73



Supersonic Leading Edge Receptivity

Fig.4.15.a.

5o

25

-25

1'4=3.5. x=30 _ x*=50 n_

A

J

_.J. (} ,t_] _ ¢. 'j'if_'_, t.,,_ _ ,.,i.."_

; ', , ,,, '..,'.,, • _
" z "",.: " 1_'/

i I

\'_ "V ¢
-50

, i i I r I _ _ ' P i I i I

-40 -30 -20 -10 0 10 20 30

Z, mm

Instantaneous distributions of oscillograms amplitude over spanwise
coordinate z at x=30.4 ram.

60

3O

-3O

-6O

M=3.5, x=30 mm,x'=40 mm

i :¢
, / 4

f" '>"" ":_'." ..... _" '4, _""'_" ' _'_'.'., _, l._,"_,

_: ViV" _: _/_" _ "'r _ _-"_-_ .,_ u_ , ,I.
\ f V'tk,:_" _,y,.,¢:_ ,4 ....... ,

i , i I [ / 1 I

-30 -20 -10 0 10 20 30

Z, am

Fig.4.15.b. Instantaneous distributions of oscillograms amplitude over spanwise
coordinate z at x=30.4mm

74



Supersonic Leading Edge Receptivity

E
E
o_
<

1.0

0.5

Z

P h '

-2 -1
0.0 T

0

x=5 mm x =40ram

A

.... c .... (D

1 ) :

1 2

700

500

300

o

e

lOO

-lOO

13, rad/mm

Fig.4.16. Distributions of A(/3) and 0(,8) of excited eigen oscillations at x=5 mm.

75



Supersonic Leading Edge Receptivity

A %ram

" 3

-2 -1 0

x=16mm

1 2

_, tad/ram

Fig.4.17.a. Distributions of A(fl)of excited eigen oscillations at x=l 6 mm.

-2

1000 [_ o x=16mm

I xi=40 mm

..... x =50 mm

• ,,c_e,_._
.,Z,--'--az,-_-_--_l_.__l:S-.-_

_-- _-'z_. 1 2
• y-&

t _@ 13, rad/m m

-10001-
l
I-

-2000

Fig.4.17.b. Distributions of ¢¢) of excited eigen oscillations at x=16 mm.

76



Supersonic Leading Edge Receptivity

x=30 mm
.

•-0- x =40 mm
...... x =50 mm

-2 -1 0 1 2

13,rad/mm

Fig.4.18.a. Distributions of A(_)of excited eigen oscillations at x=30 ram.

2OOO
0

1000

I = 7'-'lq

•

•_ _r_ -I000

-2000

x=30 mm

C; x =40 mm

.... x =50 mm

I , I

0 1 2

13, rad/mm

Fig4.18.b. Distributions of _) of excited eigen oscillations at x=30 mm.

77



Supersonic Leading Edge Receptivity

K

2O

15

10

o K40, Xle=16 mm

•"_ [] K50, Xle=16 mm

o K40, Xle=30 rnm

K50, Xle=30 mm

x K40, xle=5 mm
v_

_7
O

C,

o
v _v

LVot_ " c._ <> _ v _oQ oV

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

13, rad/mm

Fig.4.19. Transformation coefficients of disturbances K(/3) excited by different

radiation zones at M=3.5.

c

15

1.0

0.5

0.0

0 x=t6 mm __
C x=30 mm

........ C=1 -IlMCos ;( _ D

theory 0

3_0 60 90

X°

Fig.4.20 Phase velocities of boundary layer disturbances excited by acoustic waves.

78



Supersonic Leading Edge Recepdv#y

0.04

0.03

0.02

0.01

I

0.00
, I

5

A

.[]/_"

A / _Y

_,, _ _,_,
_ _ _' "'c___.. c

i 1 0
0 10 15 20

x, mm

600

400

o

e

200

Fig.4.21. Dependence of amplitude A(x) and phase q.)(x) over streamwise coordinate
x in plane of plate 2 at z=0

0.02 x=l ] rrrn

0.01

-0.01

-0.003315 + 0,026146"r

J I I , I _ I

3.0 0.2 0.4 0.6 0.8

Fig.4.22. Fluctuation diagrams of external controlled disturbances in plane of plate 2
at x=11 mm.

79



Supersonic Leading Edge Receptivity

20ot
[ X=7 ram /_

r \\ I_\

o v_.% r xx J .

-loo 5

-200
._L_

-20 -10 10 200

z, mm

Fig.4.23.a. Instantaneous distributions of oscillograms amplitude over spanwise
coordinate z at x=7 mm

20 F _ _ , . • , _ _--

E o i'- ((;l_>_/f _ " /_iil_A" , .///[((_c__._/_// ,<_'//'?(((C_

_ Oo
t, us

Fig.4.23.b. Isolines of oscillograms amplitude over spanwise coordinate z at x=7 mm,

8O



Supersonic Leading Edge Receptivity

,£

0.06

0.04

0.02

0.00

---o-- A

i , I 1 1 , '

-20 -10 0 10 20

z, mm

700

600

500
c

400

300

200

Fig423.c. Distributions of At(z) and _t(z) of controlled disturbances over spanwise
coordinate z at x=7 mm.

81



Supersonic Leading Edge Receptivity

150

100

50

o
-50

-100

-150

I k l J _ I

-20 -10 0 10 2O

z, mm

Fig.4.24.a. Instantaneous distributions of oscillograms amplitude over spanwise
coordinate z at x=11 mm.

E
E 0
N-

0 50 1O0 150 200

t, ,U.S

Fig.4.24.b. Isolines of oscillograms amplitude over spanwise coordinate z at x=l 1
mm.

82



Supersonic Leading Edge ReceplTvity

I ----<>-- A
0.04 _ _ ....o.... _ . .

o.o. _ Jl _ _S
f _. o¢

°.°°t- , , , , ,
-20 -10 0 10 20

600

4OO

o

200

z, mm

Fig.4.24.c. Distributions of At(z) and Or(z) of controlled disturbances over spanwise

coordinate z at x=l 1 mrn.

83



Supersonic Leading Edge Receptiv#y

E
E

0.6

0.4

0.2

0.0

x=7 mm ----O----

L__l_,m._ .... 0

/ i O

121

G , 0

r i L I ,

-2 -I 0

A

@

J

Q i

450

300

150
o

e

0

, ' -300
1 2

-150

_3, tad/ram

Fig4.25 Distributions of A/v6) and _£6) of external acoustic disturbances at x=7 mm

0.5

0.4

E
E 0.3

<:- 0.2

0.1

0.0

x=i]nun _ ._4_

I I I l I

-2 -1 0

_ A
: .... 0.'. (D

I I J I

1 2

250

-250
o

e

-500

-750

-lOO0

13, rad/mm

Fig.4.26. Distributions of At(B) and _6) of external acoustic disturbances at x=l 1
mm.

84



Supersonic Leading Edge Recepriv#y

0.04

o.o3

0.02

0.01

x=7 ram, x*=50 mm

-0.006499 + 0.036380"r

t I 1 I I

).0 0.2 0.4 0.6 0.8 1.0

-0.01 r

Fig.4.27.a Fluctuation diagrams of boundary layer disturbances at x=7 mm.

004 F
I

_' o.o3_

I
i
J

0.02 -

0.01 _-

i

-0.01

p.O
L
I

L

x=l ] mm.x =50 mm

c_c
-000"0751 ÷ 0.031508"r /

C/

a / c

0

0.2 0.4 0.6 0.8 1.0

Fig.4.27.b. Fluctuation diagrams of boundary layer disturbances at x=l 1 mm.

85



Supersonic Leading Edge Receptivity

0.04_

A,% x=7mm

....... x=40 mm

0.0//_[!. --.o--- x=50

- _ ,_ \ o.To_5

r, _o_ _,i i _'_ _," _, V

g e®e,,-_! a

-20 -10 lo 2o

Z, mm

Fig.4.28.a. Distributions of amplitude excited disturbances in boundary layer over z.
Leading edge at x=7 mm.

900

o

.210 E-10

-O-- X=40 Zlnm

--G--- X=50

z_

1 I0 20

Z, mm

Fig.4.28.b. Distributions of phase excited disturbances in boundary layer over z.
Leading edge at x=7 mm.

86



Supersonic Leading Edge Receptivity

100

50

0

-50

x=7 rrm_ x =40 mm

_. /u _-"Z_.- _. //t

= '. .\

"¢VU,_.S'_<¢, ', V. _ _

._

.d

3 / '-',/

"_" / ;. .?!" ' _.J, ;¢- _.,_ ,..

h

{/

. f- .f'_,,

;,i:J"Y?

-100 I , I , _ , I ,
-20 -10 0 10 20

z, mm

Fig.4.29.a. Instantaneous distributions of oscillograms amplitude over spanwise

coordinate z at x=7 mm and x*=40 mm.

E
E

N"

-20 1

0

20-

_._.> -_L _.___ 6.= -2o__

_ _ _ > .', , ' ..,_-_-- ;_,'_0,_' -
_- , _ I" .c" _ _ _ _ _" ._ .

r I 1 I 050 100 150 2 0

tl p,S

Fig4.29.b. Isolines of oscillograms amplitude over spanwise coordinate z at x=7 mm

and x*=40 mm

87



Supersonic Leading Edge Receptivity

100

5O

-5O

-100

x=7 mm, x'=50 mm ,_i

.
ta ,li ::,

•--.:"' .:;2.. _ 7! ..,', _:_,.-';"."X J

%:/

I i ; 1 I i I

-20 -10 0 10 20

Z, mm

Fig.4.30.a. Instantaneous distributions of oscillograms amplitude over spanwise
coordinate z at x=7 mm and x*=50 mm.

2O

10

-10

-20

0

t, ix s

Fig.4.30.b. Isolines of oscillograms amplitude over spanwise coordinate z at x=7 mm
and x*=50 mm.

88



Supersonic Leading Edge Receptivi&

A;%
0.06

@

_/ _/ I r, ""i ' ?J ,J 0.02

-- --J2 _, l

-20 -10

x=ll rrma

....... x=40 mm
--_-- x=50

Ji

.L.

10 20

Z, mm

Fig.4.31 .a. Distributions of amplitude excited disturbances in boundary layer over z.
Leading edge at x=l 1 mm.

_r

' "_'-@,.._C_m.._

_'_'_ , --___z.___. ,

-20 -10

eoo _-
@ ° 1 -_,-- ×=4en_=

t- --£3--- x=5o

i

200 ,-- _

p 10 2O

Z 1 mm

Fig4.31 .b. Distributions of phase excited disturbances in boundary layer over z.
Leading edge at x=11 mm.

89



Supersonic Leading Edge Receptivib:

lO0

5O

0
_D

-5O

-100

-20 -10 0 10 20

Z, mm

Fig.4.32.a. Instantaneous distributions of oscillograms amplitude over spanwise

coordinate z at x=l 1 mm and x*=40 mm.

2o

10

0

N-

-10

-2O

t, its

Fig.4.32.b. Isolines of oscillograms amplitude over spanwise coordinate z at x=l 1

mm and x*=40 mm.

9O



Supersonic Leading Edge RecepHv#y

150

IO0

5O

0

-50

-100

-150

r

i x=l 1.5 ram, x*=50 mm

_\ / _..
: _ ll-/X \,, ;_ ,

L /z It" -\ _.,..,_,--,/W/.% ,': .. " v_ I/*..C ,, ,'£ /i:

'* 'V,/ _1 ,.>--(/t _..->-"

= I _ I I i I

-20 -10 0 10

S
lrt

I

2O

z, mm

E
E
N-

2O

10

-10

-20

t, ps

Fig.4.33. Instantaneous amplitude distributions and isolines of oscillograms over
spanwise coordinate z at x=l 1 mm and x*=50 mm

91



Superson)c Leading Edge Receptivi_'

E
E

0.3

0.2

0.1

0.0

x_? rnm

• 4,

4

I r I i

-2 -3

-<3-- X=40

....... X=50

f I I i I

0 I 2

[3, rad/mm

Fig4.34.a Distributions of A_6) of excited oscillations at x=7 mm.

600

o

@

4OO

2OO

o.. x=40

........ x=50

t

" "=

_2

1 _ .... L- I _--

0 1 2-2 -1

[3, rad/mm

Fig.4.34.b. Distributions of _D_(/_)of excited oscillations at x=7 mm.

92



Supersonic Leading Edge _eceptivity

0.5

0.4

E
E 0.3

0.2
<

0.1

0.0
I i I

-2 -1
r

0

- c,- - x=40

...... x=50

i i

1 2

13, rad/mm

Fig.4.35.a. Distributions of A_fl)of excited oscillations at x=l 1 mm.

6OO

d) °tp

200

-200

-600

-1000

_3

%

x=40

.... x=50

'_m t,

"-C

I I I 1 _ i i I

-2 -1 0 1 2 -

13, rad/mm

Fig.4.35.b. Distributions of O_fl) of excited oscillations at x=l 1 mm.

93



Supersonic Leading Edge Receptivity

_z 3

o K40, m:7 zr_m

o /(50 0
v ](40, z=ll 77zTn.

V
<> K5o

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

Fig.4.36. Transformation coefficients of disturbances K(_) excited by different
radiation zones at M=2

C
0 rE=7 rYt Tr_ o

08 o z=]] m_n

El
[,.h,eory _ a

0.6

04

0.2

0.0

)(_) " " 0 0 0 0
°

\

%.
\

\

I0 20 30 40 50 60 70 80

Xo

Fig4.37. Phase velocities of disturbances in the boundary layer excited by
acoustic disturbances

r

90

94



Supersonic Leading Edge Receptivity

5. Blunted leading edge receptivity

To obtain more detailed experimental data we restricted ourselves to the tests

at M=2.

5.1. Experiment objectives

The experiments were carried out at Mach number M=2 and unit Reynolds

number Rel=lOTm "1. The controlled disturbances of frequency f=20 kHz (F=0.26x10

4) were generated by electric discharge in chamber. The initial amplitude of

controlled disturbances from the local source were fixed during these experiments.

Measurements of controlled disturbances were accompanied by calibration tests in

order to estimate the pulsation magnitude. Measurements were performed using new

hot-wire anemometer and modernized automated data system,

5.2. Flat plates

Experimental set-up was similar to shown in figs.3.1-3.3. The plate 1 with the

local disturbance source was the same as in the previous experiments described in

item 4. The distance from the plate I to the wall of the test section was a=76 mm.

The plate 1 was placed below the plate 2. In this case the generation of disturbances

in the boundary layer by external controlled acoustic field took place near the

leading edge of the plate 2. The plate 2 was fastened to pylon at 116 mm distance

from the wall of the test section T-325. The size of the plate 2 were 280 mm length,

160 mm width at top and 80 mm at basis, 7 mm thick. The radius of the leading edge

bluntness was r=2.5 mm.

5.3. Results at Mach number M=2

The modernized automated data system sufficiently increased the velocity of

information collection and improved the measurement accuracy. It allowed us to

carry out more detailed studies of the field of controlled disturbances in a free
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stream.

5.3. 1. Initial data

More detailed information on initial data is necessary for understanding and

estimating of receptivity factors.

The initial field of controlled fluctuations was measured in a free stream in the

plane of the plate 2 at the distance y1=40 mm from the surface of the plate 1 (the

plate 2 was placed further downstream). In this case the plate 2 was used as a

support for traversing mechanism. The initial amplitude of controlled disturbances

from the local source was measured during fluctuation field measurements versus x,

y, z coordinates. A simplified physical model of disturbance generation in the source

vicinity was used for the analysis of experimental data that was described above.

Such physical model is based on distributions, similar to shown in fig.5.1, where

amplitudes and phases of controlled disturbances A(x), C#(x) versus streamwise

coordinate at z=0 are presented.

In the first series of experiments on leading edge receptivity (Kosinov et al.

1996, Semionov et al. 1996) three characteristic zones in distributions A(x) and Cl:)(x)

were distinguished. It seems like we need to add one zone more, which corresponds

to the radiation of disturbances directly from the aperture of the source, arising

during the ignation of discharge. So in the given work four zones were allocated. The

first zone corresponds to acoustic waves, radiated by the source of disturbances,

which propagate upwards in the boundary layer of the plate 1 (in fig.5.1 this zone

corresponds approximately to the area of the first maximum (24 mm < x < 27 mm),

where the phase decrease with' coordinate x increasing). The second zone

corresponds to radiation of disturbances directly from the aperture of the source

(area of the second maximum in fig.5.1). For this area the phase of disturbances is

practically constant. The third zone corresponds to radiation from a vortex behind of

the aperture (in fig.5.1 this zone approximately corresponds to the area of the third

maximum at 30 mm < x < 35 mm). And the fourth zone is observed for x > 35 mm as

a radiation from TS waves.

96



Supersonic Leading Edge Receptivity

Spanwise variation of controlled disturbances. A(x), @(x) measurements in the

free stream allowed to determine the boundary in x of the area of the forced

disturbances and to begin more detailed measurements of initial disturbance field,

necessary for understanding of receptivity process. For this purpose measurements

of spanwise distribution of amplitude and phase A(z), a)(z) of controlled disturbance

were carried out. This was made in the plane of the plate 2 for streamwise

coordinates from x=24 mm (i.e. from the boundary of the forced radiation) up to x=40

mm with 1 mm step. Fig5.2 shows the isolines of artificial disturbance amplitudes

measured in this case. On the basis of these data it is possible to make a conclusion

that our simplified physical model is well justified. Vortex structures are formed

before and in the vicinity (28 <x< 30 mm) of discharge. The edges of disturbances

from before discharge vortexes merge at x=36 mm. The radiation propagate inside

the Mach cone from the source. In fig. 5.3 the same data are shown as three-

dimensional disturbance amplitude surfaces A(x, z) for more descriptive

presentation.

Figs.54-5.7 show the distributions A(z), O(z) for four cited zones of radiation:

upstream propagating disturbances (fig5.4); radiation of disturbances directly from

the source aperture (fig.5.5); radiation from a vortex behind of the source aperture

(fig.5.6); radiation from TS waves (fig.5.7). The behavior of amplitudes and phases

of controlled disturbances in a free stream is inherent for each zone of radiation.

Only the data at section x=27 mm look like transitive from the first to the second

zone.

Normal - to - the wall distributions of controlled disturbances. The results of

controlled disturbance field measurements in normal - to - the wall direction are

shown in figs. 5.8-5.9. Amplitude and phase distributions of controlled disturbances

A(y), _(y) versus y are shown at various x positions and z=0 in fig.5.8 (position y=0

corresponds to the plane of the plate 2). The values of coordinate x are chosen to

correspond to four various zones of radiation (maxima in distribution A(x) in fig.5. I ).

It is obvious, that the distributions A(y) are similar and remind distributions A(x),

presented in fig.5.1. The distribution A(y) at x=38 mm is not measured completely

because of restriction on movement of hot-wire. In fig.5.9a a trajectory of the
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maximum in distribution A(y), (marked as a circle in fig.5.8a) is shown. The received

straight line coincides with Mach line with a high accuracy.

Wave number spectra. The wave spectra over 13for the mentioned above

zones were obtained by discrete Fourier - transformation. These spectra are shown

in figs.5.1Oa-d for x values, corresponding to four various zones of radiation. The

waves are observed only in interval (-0,5; 0,5) rad/mm. For the first and the second

zone there is a maximum at ,8=0 in amplitude spectra, for two other zones the rate of

increase for three-dimensional waves even grows.

5.3. 2. Boundary layer response

Spanwise distributions of controlled disturbances in the boundary layer. To

study the disturbance field in the boundary layer, excited by external controlled

fluctuations, the plate 2 was mounted in such a way that the leading edge was

placed consequently in streamwise positions where distribution A(x) has maximum in

all zones of radiation (i.e., x-coordinate of the leading edges was x=26, 29, 31 and

38 ram). The distributions A(z) and d>(z) in the boundary layer of the plate 2 were

measured at two x* positions (x*=-40 and 50 mm, where x* is a distance from the

leading edge of the plate 2). The measurements were carried out at position

y/o_=const where natural disturbances reach the maximum in normal direction.

Obtained amplitude distributions are presented as mass flux fluctuations in figs.5.11-

5.14.

Wave number spectra. Amplitude and phase ,B-spectra of forced oscillations

in the boundary layer are shown in figs.5.15-5.18. The amplitude of forced

oscillations in the boundary layer are close to external disturbance amplitudes. It

seems like oblique waves are excited more easy than two-dimensional waves.

However, it is necessary to check this circumstance by determination of

corresponding transfer factors that would be made below.

Presented data allow to receive the mean values of mass flux fluctuations,

excited in the boundary layer by external controlled disturbances. Total mass flux

fluctuations are the following: 0,25% for the first zone, 0,58 % for the second zone
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and 0,47 % for the third zone.

Measurements of controlled disturbances in a free stream over the surface of

the plate 2. In contrast to the experiments for sharp leading edge, presented here

experiments for blunted leading edge have shown that external controlled

disturbances easily penetrate into the flow after the shock wave generated at the

blunted leading edge. In figs.5.19-5.22 the data are presented which were measured

in spanwise and normal directions for four different positions of the plate 2. All of

these measurements allow to make conclusion that intensive controlled pulsations

exist into viscous layer. As we have mentioned in the second year report, it was not

possible to detect them for sharp leading edge case.

The data presented in figs.5.19b-5.22b were measured at the distance x*=-50

mm from the leading edge. The data shown in fig.5.19a were obtained at y=5.4 mm,

in fig.5.22a -- at y=1.5 mm. All these data corresponds to z=0. Modulated behavior

of streamwise amplitude distributions (figs.5.19a-5.21a) was found. First maximum in

amplitude distributions appear when hot wire moved through shock wave from

blunted reading edge. Mean phase velocities calculations using these data give

value C=0.79 for the first zone, C=0.82 for the second zone, C=0.74 for the third

zone and C=0.93 for the fourth zone. That means that streamwise phase velocities

of controlled disturbances are not characteristic for acoustic waves. They are about

1.5 times more than those in the free flow without flat plate with blunted leading

edge. In order to understand these data it is necessary to produce a theoretical

model for propagation of acoustic waves through shock wave close to the bluntness.

Probably in this case we have a resonator between shock wave and blunted leading

edge. Thus, we can conclude that in these experiments excited disturbances were

found everywhere in the flow above flat plate in the region of Mach cone.

5.3.3. Transfer factors

Regardless the fact that excited disturbances were found everywhere, we

shall estimate transfer factors for each of described above cases in boundary layer.

It is necessary to do this for each x* position. Relevant data are shown in figs.5.23-
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5.26. Only for the first zone transfer ratio demonstrates a smooth behavior. For the

second and the third zones there are some peaks in these dependencies. Maybe

this is because the initial wave spectra contain peaks too. Obtained experimental

data correlate with data, received by Gaponov (1995). Probable reason for such

behavior of transfer ratio in the last zones may be thought as improper determination

of these ratios without determination of,8-spectra of external disturbances. For linear

case of transformation of external fluctuations into boundary layer unstable

disturbances it is necessary to consider disturbances with the identical wave

characteristics (Gaponenko et al. 1996).

Considering obtained transfer factors as mean values over ,6, we see that

these factors increase from 2 (for the first zone) to about 6 (for the fourth zone)

times. In another hand, using mean total values of mass flux fluctuations obtained in

the free stream and in the boundary layer, we can determine mean transfer ratio for

each case. Relevant data are presented in Table 5.1. Comparing these data with

those obtained for sharp leading edge, we conclude that mean transfer factors are 2-

3 times more for boundary layer on blunted flat plate. As transfer factors decrease

with increasing x*, it means that the excited pulsations enter the stable zone of

boundary layer on blunted fiat plate.

Table 5.1.

x_--40 mrr

x*=50 mrr

x=26 mm

<m>_ <m>b, K1
% %

0.108 0.254 2.36

0.108 0.199 1.85

x=29 mm

<m>fs <rn>_ K2
%

0.164 0.242 1.48

0.164 0.219 1.33

x=31 mm

<m>fs<m>b_% K3
%

0.15i 0.386 2.51

0.15 0.304 2.03

x=38 mm

<m>fs °,/c <m>bl K4

%

0.116 0.636 5.5

0.116 0.611 5.29

To show which disturbances are generated by external controlled fluctuations

in the boundary layer, we consider phase velocity of waves. The data are shown in

fig.5.27. Here the solid line which corresponds to critical phase velocity

C*=l-l/(M*cos@)), distinguishes waves of discrete and continuos spectra.
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5.4. Figures
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Fig.5.2. Isolines of disturbances amplitude from the local source in free stream
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§

Fig.5.3. View of mass flow fluctuations from the local source in free stream
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6. Discussion

First of all the we emphasize that an excitation of disturbances in the

boundary layer at M=3.5 occurs considerably more intensive compared with M=2

case. According to the theoretical results, obtained by (Fedorov & Khohlov 1992;

Gaponov 1995), the intensity of excited disturbances in the boundary layer depends

on the spatial orientation of external acoustic waves and grows with inclination angle

of waves decreasing in the normal to the model plane. The intensity of the excited

disturbances have the maximum when the inclination angle of sound waves in the

normal to model plane is zero. However it is necessary to carry out the theoretical

analysis of Mach number effect on the transformation of forced sound waves to

unstable boundary layer disturbances. We should consider the possible reasons of

this difference concerning our experiments.

1. One reason for such difference in the transformation coefficients may be

explained from the features of these experiments and the wind tunnel. The neutral

stability curves for disturbances with various inclination angles at M=2 and M=3.5,

calculated by B. V. Smorodsky, are presented in figs.6.1 and 6.2. On these plots the

positions correspond to the experiments are depicted by symbols. The

measurements were carried out in unstable area. It is well known, that for supersonic

boundary layer in the plate leading edge vicinity there is an area of acoustic

disturbances amplification, which expands with Mach number increasing. The

experimental data for acoustic branch of neutral stability curve, obtained in our tests

for natural disturbances in T-325 wind tunnel are presented in fig.6.3. Expansion of

amplification area for acoustic disturbances in the vicinity of the leading edge of the

plate with Mach number increasing is obvious for M>2. Also it was obtained, that at.

M=3.5 and M=4 these areas of acoustic instability and instability region for TS waves

cross in a broad band of frequencies. It causes a monotonous growth of

disturbances in the boundary-layer at M=4.5 immediately from the leading edge, that

was obtained by Kendall (1975) too. This also promotes an increase of

transformation coefficients K for M=3.5 as compared with M=2 case.
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2. A nonlinear effect may be thought as the second reason. All submitted

results were considered from the view-point of linear interaction of external acoustic

field with supersonic boundary layer in the vicinity of the leading edge of the model.

If process of interaction is nonlinear, the direct energy transfer from external low-

frequency background into boundary layer eigenoscillations by means of parametric

resonance mechanism is possible. In Gaponov et al. 1997, the influence of weakly

nonlinear interaction on excitation of unstable modes by acoustic waves was

investigated in comparison with linear case. It was obtained there, that nonlinear

effects for the disturbance generation is weak in T-325 wind tunnel at M=2. This

weak influence is connected with (a) large difference between forced and natural

frequencies and (2) a small amplitude of the forced sound waves. But with Mach

number increasing the nonlinear receptivity mechanism may occur possibly due to

changing of forced disturbance spectra in the wind tunnel. We are sure now that it is

not possible in T-325 because a noise level in T-325 test section is too small for this.

3. The main problem in experimental determination of receptivity factors is the

indetermination of a,-spectra of initial controlled disturbances. A separation of

radiation field into different zones is rather conventional. It may be proposed to

investigate the boundary layer response with more accuracy with the plate 2

continuously moving through radiation field without separation into zones. However

this work is very hard..For practical use it may be proposed to use the mean

receptivity factors or the maximal value.

The experiments with moving flat plate 2 were performed in this work during

the third year. The plate 2 was trapezoidal shaped with sharp leading edge mounted

on traversing mechanism with hot-wire at fixed coordinates x*=-50 mm, z=0. The plate

2 moved downstream starting from unforced flow. The data are presented in fig.6.4.

for two different intensities of controlled disturbance source. We notice that

boundary layer response was observed firstly even if Mach line from controlled

disturbance source occurred downstream from the leading edge. The data shown in

fig.6.4 are similar to the data presented in figs.3.20, 4.21, 5.1. These data also

demonstrate few peaks in amplitude distributions depending on amplitude and phase

variation. However, these variations occur more slowly in x-direction. Phase
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reduction (from 30 mm to 37 mm) can be explained by the increasing of phase

velocity of excited disturbances that shown in fig.4.37. Then phase velocity of

excited pulsations is almost constant and for the data presented in fig.6.4 we have

growth downstream of phase. Disturbance amplitude increasing from 25 mm to 32

mm let conclude that occur growth of boundary layer receptivity.

Probably the creation of the source of longitudinal controlled disturbances

is necessary for the subsequent research of influence of Mach number

receptivity and to obtain receptivity factors more precisely. We are discussing a

possibility to find the compromise between the theoretical approaches and used here

experimental method to reexamine the leading edge receptivity. The goal of future

experiments to estimate the receptivity factors more precisely with respect to a

concrete theoretic model.
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7. Conclusion

According to the Agreement about the cooperation between ITAM SD RAS

and NASA (USA) on research of leading edge receptivity at Mach numbers 2 and

3.5, experiments are completed. Hot-wire measurements were carried out and the

level and separation of natural fluctuations into modes in free stream of supersonic

T-325 ITAM SD RAS wind tunnel were determined at Mach numbers 2 and 3.5 as

well as the level of the controlled disturbances field introduced in free stream using a

local disturbances source was defined using Kovasznay's method. For fulfillment of

these experiments the technical works were carried out to reduce noise level in the

test section. For introduction of the controlled disturbances in free stream the

disturbances source was improved, to ensure a smooth adjustment of intensity of the

excited disturbances. We should emphasis the following results:

During the fist year:

1. It was obtained that mass flux fluctuations increased from 0.07% to 0.2% in

the test section at Mach number M=2 in the range of unit Reynolds numbers /Re_

from 7.0x106 to 30x106 m 4

2. For M=3.5 and Rel=7.0xl0 e m 1 case the mass flux fluctuations were about

0.15% in the test section.

3. The controlled fluctuations field was investigated in the test section at M=2,

Rel=9.gx10 e m 1 and F=0.25x10 4. It was obtained that disturbances introduced in

the free stream are acoustic waves.

4. The controlled fluctuations field was investigated in the test section at

M=3.5, Rel=7.0xl06 m 1 and F=0.28x10 -4. It was obtained that disturbances

introduced in free stream are acoustic waves too.

During the second year::

5. Leading edge receptivity at Mach numbers M=2 and 3.5 was studied.

Experimental study of the controlled disturbances field, introduced into free stream

with the help of the local source of disturbances was carried out. Disturbances in the
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flat plate boundary layer, excited by external controlled acoustic oscillations in a

vicinity of leading edge were measured.

6. Quantitative comparison was carried out between initial level of acoustic

free stream disturbances and supersonic boundary layer fluctuations, caused by

them. Transformation coefficients of acoustic disturbances into supersonic boundary

layer oscillations were obtained.

7. It was found that the excitation of disturbances in the boundary layer by

external disturbances occurs considerably more heavily at M=3.5 than at M=2.

Transformation coefficients for oblique waves in the boundary layer are higher than

for ,Z_0 waves.

During the third year:

8. After nozzles polishing we found that the mass flux fluctuations increased

from 0.05% to 0.08% in the test section at Mach number M=2 in the range of unit

Reynolds numbers Re1 from 6.0x10 e to 34x 106 m -1

9. Experimental study of the controlled disturbances field, introduced into free

stream with the help of the local source of disturbances, was carried out at M=2.

Disturbances in the flat plate boundary layer, excited by the external controlled

acoustic oscillations in the vicinity of the blunted leading edge, were measured

10. Quantitative .comparison was made between initial level of acoustic

disturbances in free stream and supersonic boundary layer fluctuations, caused by

them in the vicinity of blunted leading edge. The transformation coefficients of

acoustic disturbances into supersonic boundary layer oscillations were obtained. It

was found, that the excitation of disturbances in the boundary layer by external

disturbances occurs considerably more heavily in blunted leading edge case than in

sharp leading edge case.

11. In these experiments controlled disturbances were found everywhere in

the flow above blunted flat plate in the Mach cone region.

These data will serve as a background for the subsequent theoretical

research of the leading edge receptivity.
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